Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Sci China Life Sci ; 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2297189

ABSTRACT

Protein-biomolecule interactions play pivotal roles in almost all biological processes. For a biomolecule of interest, the identification of the interacting protein(s) is essential. For this need, although many assays are available, highly robust and reliable methods are always desired. By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin (SA)-biotin system, we developed the Specific Pupylation as IDEntity Reporter (SPIDER) method for identifying protein-biomolecule interactions. Using SPIDER, we validated the interactions between the known binding proteins of protein, DNA, RNA, and small molecule. We successfully applied SPIDER to construct the global protein interactome for m6A and mRNA, identified a variety of uncharacterized m6A binding proteins, and validated SRSF7 as a potential m6A reader. We globally identified the binding proteins for lenalidomide and CobB. Moreover, we identified SARS-CoV-2-specific receptors on the cell membrane. Overall, SPIDER is powerful and highly accessible for the study of protein-biomolecule interactions.

2.
J Clin Med ; 11(19)2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2066211

ABSTRACT

Age has been found to be the single most significant factor in COVID-19 severity and outcome. However, the age-related severity factors of COVID-19 have not been definitively established. In this study, we detected SARS-CoV-2-specific antibody responses and infectious disease-related blood indicators in 2360 sera from 783 COVID-19 patients, with an age range of 1-92 years. In addition, we recorded the individual information and clinical symptoms of the patients. We found that the IgG responses for S1, N, and ORF3a and the IgM for NSP7 were associated with severe COVID-19 at different ages. The IgM responses for the S-protein peptides S1-113 (aa 673-684) and S2-97 (aa 1262-1273) were associated with severe COVID-19 in patients aged <60. Furthermore, we found that the IgM for S1-113 and NSP7 may play a protective role in patients aged <60 and >80, respectively. Regarding clinical parameters, we analyzed the diagnostic ability of five clinical parameters for severe COVID-19 in six age groups and identified three-target panel, glucose, IL-6, myoglobin, IL-6, and NT proBNP as the appropriate diagnostic markers for severe COVID-19 in patients aged <41, 41-50, 51-60, 61-70, 71-80, and >80, respectively. The age-associated severity factors revealed here will facilitate our understanding of COVID-19 immunity and diagnosis, and eventually provide meaningful information for combating the pandemic.

3.
Front Med (Lausanne) ; 9: 854788, 2022.
Article in English | MEDLINE | ID: covidwho-1952377

ABSTRACT

Objective: The long-term impact of COVID-19 on patient health has been a recent focus. This study aims to determine the persistent symptoms and psychological conditions of patients hospitalized with COVID-19 15 months after onset, that patients first developed symptoms. The potential risk factors were also explored. Methods: A cohort of COVID-19 patients discharged from February 20, 2020 to March 31, 2020 was recruited. Follow-ups were conducted using validated questionnaires and psychological screening scales at 15 months after onset to evaluate the patients' health status. The risk factors for long-term health impacts and their associations with disease severity was analyzed. Findings: 534 COVID-19 patients were enrolled. The median age of the patients was 62.0 years old (IQR 52.0-70.0) and 295 were female (55.2%). The median time from onset to follow-up was 460.0 (451.0-467.0) days. Sleep disturbance (18.5%, 99/534) and fatigue (17.2%, 92/534) were the most common persistent symptoms. 6.4% (34/534) of the patients had depression, 9.2% (49/534) were anxious, 13.0% (70/534) had insomnia and 4.7% (25/534) suffered from post-traumatic stress disorder (PTSD). Multivariate adjusted logistic regression analysis showed that glucocorticoid use during hospitalization (OR 3.58, 95% CI 1.12-11.44) was significantly associated with an increased risk of fatigue. The OR values for anxiety and sleep disorders were 2.36 (95% CI 1.07-5.20) and 2.16 (95% CI 1.13-4.14) in females to males. The OR value of PTSD was 25.6 (95% CI 3.3-198.4) in patients with persistent symptoms to those without persistent symptoms. No significant associations were observed between fatigue syndrome or adverse mental outcomes and disease severity. Conclusions: 15-month follow-up in this study demonstrated the need of extended rehabilitation intervention for complete recovery in COVID-19 patients.

4.
Acta Biochim Biophys Sin (Shanghai) ; 54(4): 556-564, 2022 Apr 25.
Article in English | MEDLINE | ID: covidwho-1862958

ABSTRACT

Age has been found to be one of the main risk factors for the severity and outcome of COVID-19. However, differences in SARS-CoV-2 specific antibody responses among COVID-19 patients of different age groups remain largely unknown. In this study, we analyzed the IgG/IgM responses to 21 SARS-CoV-2 proteins and 197 peptides that fully cover the spike protein against 731 sera collected from 731 COVID-19 patients aged from 1 to We show that there is no overall difference in SARS-CoV-2 antibody responses in COVID-19 patients in the 4 age groups. By antibody response landscape maps, we find that the IgG response profiles of SARS-CoV-2 proteins are positively correlated with age. The S protein linear epitope map shows that the immunogenicity of the S-protein peptides is related to peptide sequence, disease severity and age of the COVID-19 patients. Furthermore, the enrichment analysis indicates that low S1 IgG responses are enriched in patients aged <50 and high S1 IgG responses are enriched in mild COVID-19 patients aged >60. In addition, high responses of non-structural/accessory proteins are enriched in severe COVID-19 patients aged >70. These results suggest the distinct immune response of IgG/IgM to each SARS-CoV-2 protein in patients of different age, which may facilitate a deeper understanding of the immune responses in COVID-19 patients.


Subject(s)
Age Factors , Antibody Formation , COVID-19 , Aged , Antibodies, Viral/blood , COVID-19/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Middle Aged , Peptides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
J Adv Res ; 36: 133-145, 2022 02.
Article in English | MEDLINE | ID: covidwho-1536633

ABSTRACT

Introduction: The COVID-19 global pandemic is far from ending. There is an urgent need to identify applicable biomarkers for early predicting the outcome of COVID-19. Growing evidences have revealed that SARS-CoV-2 specific antibodies evolved with disease progression and severity in COIVD-19 patients. Objectives: We assumed that antibodies may serve as biomarkers for predicting the clinical outcome of hospitalized COVID-19 patients on admission. Methods: By taking advantage of a newly developed SARS-CoV-2 proteome microarray, we surveyed IgG responses against 20 proteins of SARS-CoV-2 in 1034 hospitalized COVID-19 patients on admission and followed till 66 days. The microarray results were further correlated with clinical information, laboratory test results and patient outcomes. Cox proportional hazards model was used to explore the association between SARS-CoV-2 specific antibodies and COVID-19 mortality. Results: Nonsurvivors (n = 955) induced higher levels of IgG responses against most of non-structural proteins than survivors (n = 79) on admission. In particular, the magnitude of IgG antibodies against 8 non-structural proteins (NSP1, NSP4, NSP7, NSP8, NSP9, NSP10, RdRp, and NSP14) and 2 accessory proteins (ORF3b and ORF9b) possessed significant predictive power for patient death, even after further adjustments for demographics, comorbidities, and common laboratory biomarkers for disease severity (all with p trend < 0.05). Additionally, IgG responses to all of these 10 non-structural/accessory proteins were also associated with the severity of disease, and differential kinetics and serum positive rate of these IgG responses were confirmed in COVID-19 patients of varying severities within 20 days after symptoms onset. The area under curves (AUCs) for these IgG responses, determined by computational cross-validations, were between 0.62 and 0.71. Conclusions: Our findings might have important implications for improving clinical management of COVID-19 patients.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunoglobulin G , SARS-CoV-2 , Severity of Illness Index
6.
Genomics Proteomics Bioinformatics ; 19(5): 669-678, 2021 10.
Article in English | MEDLINE | ID: covidwho-1499887

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2, varies with regard to symptoms and mortality rates among populations. Humoral immunity plays critical roles in SARS-CoV-2 infection and recovery from COVID-19. However, differences in immune responses and clinical features among COVID-19 patients remain largely unknown. Here, we report a database for COVID-19-specific IgG/IgM immune responses and clinical parameters (named COVID-ONE-hi). COVID-ONE-hi is based on the data that contain the IgG/IgM responses to 24 full-length/truncated proteins corresponding to 20 of 28 known SARS-CoV-2 proteins and 199 spike protein peptides against 2360 serum samples collected from 783 COVID-19 patients. In addition, 96 clinical parameters for the 2360 serum samples and basic information for the 783 patients are integrated into the database. Furthermore, COVID-ONE-hi provides a dashboard for defining samples and a one-click analysis pipeline for a single group or paired groups. A set of samples of interest is easily defined by adjusting the scale bars of a variety of parameters. After the "START" button is clicked, one can readily obtain a comprehensive analysis report for further interpretation. COVID-ONE-hi is freely available at www.COVID-ONE.cn.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity, Humoral , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2
7.
Cell Rep ; 36(2): 109391, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1303454

ABSTRACT

The immunogenicity of the SARS-CoV-2 proteome is largely unknown, especially for non-structural proteins and accessory proteins. In this study, we collect 2,360 COVID-19 sera and 601 control sera. We analyze these sera on a protein microarray with 20 proteins of SARS-CoV-2, building an antibody response landscape for immunoglobulin (Ig)G and IgM. Non-structural proteins and accessory proteins NSP1, NSP7, NSP8, RdRp, ORF3b, and ORF9b elicit prevalent IgG responses. The IgG patterns and dynamics of non-structural/accessory proteins are different from those of the S and N proteins. The IgG responses against these six proteins are associated with disease severity and clinical outcome, and they decline sharply about 20 days after symptom onset. In non-survivors, a sharp decrease of IgG antibodies against S1 and N proteins before death is observed. The global antibody responses to non-structural/accessory proteins revealed here may facilitate a deeper understanding of SARS-CoV-2 immunology.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Nonstructural Proteins/immunology , Viral Regulatory and Accessory Proteins/immunology , Adult , Aged , Antibodies, Viral/immunology , Antibody Formation , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , Protein Array Analysis
8.
Sustain Cities Soc ; 75: 102989, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1213518

ABSTRACT

In Beijing, the lockdown imposed to curb the spread of COVID-2019 has led to a sharp drop in road traffic. This provides an opportunity to quantify the contribution rate of road traffic to PM2.5 and NO2 concentrations. This paper creatively puts forward the concept of the Maximum Possible Contribution Rate (MPCR) and estimates the MPCR of road traffic to PM2.5 and NO2 by analyzing the daily air pollution data and road traffic data in Beijing from January 24 to March 31, 2020 and the same period in 2019. The findings of this paper include: The decrease in SO2 concentration during the lockdown indicates a reduction in pollutant emissions from industry and households. During the lockdown, road traffic in Beijing reduced by 46.9 %, while the concentrations of PM2.5 and NO2 in the atmosphere reduced by 5.6 % and 29.2 % respectively. The MPCR of road traffic to PM2.5 and NO2 concentrations are 11.9 % and 62.3 %, respectively. The concentration of O3 did not increase significantly with the decrease of PM2.5 and NO2 concentrations. The findings of this paper provide a reference for city managers to evaluate the contribution rate of Beijing's road traffic to air pollutants and to formulate reasonable emission reduction policies.

9.
Allergy ; 76(2): 551-561, 2021 02.
Article in English | MEDLINE | ID: covidwho-1140085

ABSTRACT

BACKGROUND: The missing asymptomatic COVID-19 infections have been overlooked because of the imperfect sensitivity of the nucleic acid testing (NAT). Globally understanding the humoral immunity in asymptomatic carriers will provide scientific knowledge for developing serological tests, improving early identification, and implementing more rational control strategies against the pandemic. MEASURE: Utilizing both NAT and commercial kits for serum IgM and IgG antibodies, we extensively screened 11 766 epidemiologically suspected individuals on enrollment and 63 asymptomatic individuals were detected and recruited. Sixty-three healthy individuals and 51 mild patients without any preexisting conditions were set as controls. Serum IgM and IgG profiles were further probed using a SARS-CoV-2 proteome microarray, and neutralizing antibody was detected by a pseudotyped virus neutralization assay system. The dynamics of antibodies were analyzed with exposure time or symptoms onset. RESULTS: A combination test of NAT and serological testing for IgM antibody discovered 55.5% of the total of 63 asymptomatic infections, which significantly raises the detection sensitivity when compared with the NAT alone (19%). Serum proteome microarray analysis demonstrated that asymptomatics mainly produced IgM and IgG antibodies against S1 and N proteins out of 20 proteins of SARS-CoV-2. Different from strong and persistent N-specific antibodies, S1-specific IgM responses, which evolved in asymptomatic individuals as early as the seventh day after exposure, peaked on days from 17 days to 25 days, and then disappeared in two months, might be used as an early diagnostic biomarker. 11.8% (6/51) mild patients and 38.1% (24/63) asymptomatic individuals did not produce neutralizing antibody. In particular, neutralizing antibody in asymptomatics gradually vanished in two months. CONCLUSION: Our findings might have important implications for the definition of asymptomatic COVID-19 infections, diagnosis, serological survey, public health, and immunization strategies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Carrier State/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19 Testing/methods , Carrier State/blood , Carrier State/diagnosis , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged
10.
Cell Rep ; 34(13): 108915, 2021 03 30.
Article in English | MEDLINE | ID: covidwho-1128919

ABSTRACT

To fully decipher the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein, it is essential to assess which part is highly immunogenic in a systematic way. We generate a linear epitope landscape of the Spike protein by analyzing the serum immunoglobulin G (IgG) response of 1,051 coronavirus disease 2019 (COVID-19) patients with a peptide microarray. We reveal two regions rich in linear epitopes, i.e., C-terminal domain (CTD) and a region close to the S2' cleavage site and fusion peptide. Unexpectedly, we find that the receptor binding domain (RBD) lacks linear epitope. We reveal that the number of responsive peptides is highly variable among patients and correlates with disease severity. Some peptides are moderately associated with severity and clinical outcome. By immunizing mice, we obtain linear-epitope-specific antibodies; however, no significant neutralizing activity against the authentic virus is observed for these antibodies. This landscape will facilitate our understanding of SARS-CoV-2-specific humoral responses and might be useful for vaccine refinement.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/epidemiology , COVID-19/genetics , China/epidemiology , Disease Models, Animal , Epitope Mapping/methods , Epitopes/immunology , Female , Humans , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
11.
Mol Cell Proteomics ; 20: 100059, 2021.
Article in English | MEDLINE | ID: covidwho-1087559

ABSTRACT

Antibodies play essential roles in both diagnostics and therapeutics. Epitope mapping is essential to understand how an antibody works and to protect intellectual property. Given the millions of antibodies for which epitope information is lacking, there is a need for high-throughput epitope mapping. To address this, we developed a strategy, Antibody binding epitope Mapping (AbMap), by combining a phage displayed peptide library with next-generation sequencing. Using AbMap, profiles of the peptides bound by 202 antibodies were determined in a single test, and linear epitopes were identified for >50% of the antibodies. Using spike protein (S1 and S2)-enriched antibodies from the convalescent serum of one COVID-19 patient as the input, both linear and potentially conformational epitopes of spike protein specific antibodies were identified. We defined peptide-binding profile of an antibody as the binding capacity (BiC). Conceptually, the BiC could serve as a systematic and functional descriptor of any antibody. Requiring at least one order of magnitude less time and money to map linear epitopes than traditional technologies, AbMap allows for high-throughput epitope mapping and creates many possibilities.


Subject(s)
COVID-19/immunology , Epitope Mapping/methods , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Viral/metabolism , Enzyme-Linked Immunosorbent Assay , Epitopes/metabolism , Escherichia coli Proteins/immunology , High-Throughput Nucleotide Sequencing , Humans , Immune Sera/blood , Immune Sera/immunology , Peptide Library
12.
Cell Mol Immunol ; 18(3): 621-631, 2021 03.
Article in English | MEDLINE | ID: covidwho-1042916

ABSTRACT

Serological tests play an essential role in monitoring and combating the COVID-19 pandemic. Recombinant spike protein (S protein), especially the S1 protein, is one of the major reagents used for serological tests. However, the high cost of S protein production and possible cross-reactivity with other human coronaviruses pose unavoidable challenges. By taking advantage of a peptide microarray with full spike protein coverage, we analyzed 2,434 sera from 858 COVID-19 patients, 63 asymptomatic patients and 610 controls collected from multiple clinical centers. Based on the results, we identified several S protein-derived 12-mer peptides that have high diagnostic performance. In particular, for monitoring the IgG response, one peptide (aa 1148-1159 or S2-78) exhibited a sensitivity (95.5%, 95% CI 93.7-96.9%) and specificity (96.7%, 95% CI 94.8-98.0%) comparable to those of the S1 protein for the detection of both symptomatic and asymptomatic COVID-19 cases. Furthermore, the diagnostic performance of the S2-78 (aa 1148-1159) IgG was successfully validated by ELISA in an independent sample cohort. A panel of four peptides, S1-93 (aa 553-564), S1-97 (aa 577-588), S1-101 (aa 601-612) and S1-105 (aa 625-636), that likely will avoid potential cross-reactivity with sera from patients infected by other coronaviruses was constructed. The peptides identified in this study may be applied independently or in combination with the S1 protein for accurate, affordable, and accessible COVID-19 diagnosis.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19/blood , Immunoglobulin G/blood , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Adult , Aged , Female , Humans , Male , Middle Aged , Peptides/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL